Anthropic Logo

Anthropic

Machine Learning Systems Engineer, Research Tools

Reposted 8 Days Ago
Easy Apply
In-Office
3 Locations
320K-405K Annually
Mid level
Easy Apply
In-Office
3 Locations
320K-405K Annually
Mid level
The role involves developing and optimizing tokenization systems for machine learning, collaborating with research teams, and improving model training efficiency.
The summary above was generated by AI
About Anthropic

Anthropic’s mission is to create reliable, interpretable, and steerable AI systems. We want AI to be safe and beneficial for our users and for society as a whole. Our team is a quickly growing group of committed researchers, engineers, policy experts, and business leaders working together to build beneficial AI systems.

About the Role:

We are seeking an experienced Machine Learning Systems Engineer to join our Encodings and Tokenization team at Anthropic. This cross-functional role will be instrumental in developing and optimizing the encodings and tokenization systems used throughout our Finetuning workflows. As a bridge between our Pretraining and Finetuning teams, you'll build critical infrastructure that directly impacts how our models learn from and interpret data. Your work will be foundational to Anthropic's research progress, enabling more efficient and effective training of our AI systems while ensuring they remain reliable, interpretable, and steerable.

Responsibilities:
  • Design, develop, and maintain tokenization systems used across Pretraining and Finetuning workflows
  • Optimize encoding techniques to improve model training efficiency and performance
  • Collaborate closely with research teams to understand their evolving needs around data representation
  • Build infrastructure that enables researchers to experiment with novel tokenization approaches
  • Implement systems for monitoring and debugging tokenization-related issues in the model training pipeline
  • Create robust testing frameworks to validate tokenization systems across diverse languages and data types
  • Identify and address bottlenecks in data processing pipelines related to tokenization
  • Document systems thoroughly and communicate technical decisions clearly to stakeholders across teams
You May Be a Good Fit If You: 
  • Have significant software engineering experience with demonstrated machine learning expertise
  • Are comfortable navigating ambiguity and developing solutions in rapidly evolving research environments
  • Can work independently while maintaining strong collaboration with cross-functional teams
  • Are results-oriented, with a bias towards flexibility and impact
  • Have experience with machine learning systems, data pipelines, or ML infrastructure
  • Are proficient in Python and familiar with modern ML development practices
  • Have strong analytical skills and can evaluate the impact of engineering changes on research outcomes
  • Pick up slack, even if it goes outside your job description
  • Enjoy pair programming (we love to pair!)
  • Care about the societal impacts of your work and are committed to developing AI responsibly
Strong Candidates May Also Have Experience With:
  • Working with machine learning data processing pipelines
  • Building or optimizing data encodings for ML applications
  • Implementing or working with BPE, WordPiece, or other tokenization algorithms
  • Performance optimization of ML data processing systems
  • Multi-language tokenization challenges and solutions
  • Research environments where engineering directly enables scientific progress
  • Distributed systems and parallel computing for ML workflows
  • Large language models or other transformer-based architectures (not required)

Deadline to apply: None. Applications will be reviewed on a rolling basis.

The annual compensation range for this role is listed below. 

For sales roles, the range provided is the role’s On Target Earnings ("OTE") range, meaning that the range includes both the sales commissions/sales bonuses target and annual base salary for the role.

Annual Salary:
$320,000$405,000 USD
Logistics

Education requirements: We require at least a Bachelor's degree in a related field or equivalent experience.
Location-based hybrid policy:
Currently, we expect all staff to be in one of our offices at least 25% of the time. However, some roles may require more time in our offices.

Visa sponsorship: We do sponsor visas! However, we aren't able to successfully sponsor visas for every role and every candidate. But if we make you an offer, we will make every reasonable effort to get you a visa, and we retain an immigration lawyer to help with this.

We encourage you to apply even if you do not believe you meet every single qualification. Not all strong candidates will meet every single qualification as listed.  Research shows that people who identify as being from underrepresented groups are more prone to experiencing imposter syndrome and doubting the strength of their candidacy, so we urge you not to exclude yourself prematurely and to submit an application if you're interested in this work. We think AI systems like the ones we're building have enormous social and ethical implications. We think this makes representation even more important, and we strive to include a range of diverse perspectives on our team.
Your safety matters to us. To protect yourself from potential scams, remember that Anthropic recruiters only contact you from @anthropic.com email addresses. In some cases, we may partner with vetted recruiting agencies who will identify themselves as working on behalf of Anthropic. Be cautious of emails from other domains. Legitimate Anthropic recruiters will never ask for money, fees, or banking information before your first day. If you're ever unsure about a communication, don't click any links—visit anthropic.com/careers directly for confirmed position openings.

How we're different

We believe that the highest-impact AI research will be big science. At Anthropic we work as a single cohesive team on just a few large-scale research efforts. And we value impact — advancing our long-term goals of steerable, trustworthy AI — rather than work on smaller and more specific puzzles. We view AI research as an empirical science, which has as much in common with physics and biology as with traditional efforts in computer science. We're an extremely collaborative group, and we host frequent research discussions to ensure that we are pursuing the highest-impact work at any given time. As such, we greatly value communication skills.

The easiest way to understand our research directions is to read our recent research. This research continues many of the directions our team worked on prior to Anthropic, including: GPT-3, Circuit-Based Interpretability, Multimodal Neurons, Scaling Laws, AI & Compute, Concrete Problems in AI Safety, and Learning from Human Preferences.

Come work with us!

Anthropic is a public benefit corporation headquartered in San Francisco. We offer competitive compensation and benefits, optional equity donation matching, generous vacation and parental leave, flexible working hours, and a lovely office space in which to collaborate with colleagues. Guidance on Candidates' AI Usage: Learn about our policy for using AI in our application process

Top Skills

Python

Similar Jobs

An Hour Ago
Easy Apply
Hybrid
New York, NY, USA
Easy Apply
23-32 Annually
Entry level
23-32 Annually
Entry level
Healthtech • Information Technology • Software • Telehealth
As a Recruiting Coordinator, you will manage candidate scheduling, ensure a smooth interview process, optimize internal processes, and support the recruiting team in transitioning to a full recruiter role.
Top Skills: Google SuiteMonday.ComTrello
An Hour Ago
Remote or Hybrid
United States
136K-170K Annually
Senior level
136K-170K Annually
Senior level
Digital Media • Gaming • Information Technology • Software • Sports • Esports • Big Data Analytics
Lead Software Engineer responsible for designing and developing API services, collaborating with business teams, and ensuring high-quality delivery of applications.
Top Skills: AWSC#MySQLNode.jsReactReduxSQLSQL Server
An Hour Ago
Easy Apply
Remote or Hybrid
2 Locations
Easy Apply
119K-170K Annually
Mid level
119K-170K Annually
Mid level
Artificial Intelligence • Information Technology • Machine Learning • Natural Language Processing • Productivity • Software • Generative AI
As a Sales Engineer I, you will collaborate with Account Executives to demonstrate and architect solutions using Superhuman's AI productivity tools, enhancing customer workflows and value delivery.
Top Skills: Ai TechnologiesCodaGmailSalesforce

What you need to know about the Seattle Tech Scene

Home to tech titans like Microsoft and Amazon, Seattle punches far above its weight in innovation. But its surrounding mountains, sprinkled with world-famous hiking trails and climbing routes, make the city a destination for outdoorsy types as well. Established as a logging town before shifting to shipbuilding and logistics, the Emerald City is now known for its contributions to aerospace, software, biotech and cloud computing. And its status as a thriving tech ecosystem is attracting out-of-town companies looking to establish new tech and engineering hubs.

Key Facts About Seattle Tech

  • Number of Tech Workers: 287,000; 13% of overall workforce (2024 CompTIA survey)
  • Major Tech Employers: Amazon, Microsoft, Meta, Google
  • Key Industries: Artificial intelligence, cloud computing, software, biotechnology, game development
  • Funding Landscape: $3.1 billion in venture capital funding in 2024 (Pitchbook)
  • Notable Investors: Madrona, Fuse, Tola, Maveron
  • Research Centers and Universities: University of Washington, Seattle University, Seattle Pacific University, Allen Institute for Brain Science, Bill & Melinda Gates Foundation, Seattle Children’s Research Institute

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account